
2020-09-30

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Addresses and
pointers

2
Addresses and pointers

Outline

• In this lesson, we will:

– Revisit the concept of an address

– Consider how to store them

– Look at some examples and naming conventions

– Understand the size of addresses

3
Addresses and pointers

Addresses

• Recall that we have seen that

– Memory is byte addressable

• Every byte has a separate address

• It is convenient to represent these addresses using hexadecimal

– The size of an address is fixed for a specific processor

• Most general processors have 64-bits addresses

• Microcontrollers generally have up to 32-bit addresses

• The PIC 10F200 microcontroller has 8-bit addresses

– It costs less than 50¢

4
Addresses and pointers

Addresses

• The different integer types store various numbers of bits:

– Question: Can we not just store an address?

Type Bits

unsigned char 8

unsigned short 16

unsigned int 32

unsigned long 64

PIC 10F200

Intel 486

Most computers today…

2020-09-30

2

5
Addresses and pointers

Addresses

• We could have a primitive data type 'address_t':

int main() {

 int array[10];

 address_t addr_array{ array };

 // The variable 'addr_array' is now stores

 // the address of 'array'

 // These should print the same value

 std::cout << array << std::endl;

 std::cout << addr_array << std::endl;

 // Carry on...

 return 0;

}

6
Addresses and pointers

Addresses

• Problem: We have an address, but what is there?

– Is it an int?

– Is it a double or a float?

int main() {

 int array_a[10];

 double array_b[10];

 address_t addr_a{ array_a };

 address_t addr_b{ array_b };

 // ...

7
Addresses and pointers

Addresses

• C++ has a solution to this:

– A variable (local or parameter) is declared to be the “address of an
int” or the “address of a double” by prefixing an asterisks to the
identifier

int main() {

 int array_a[10];

 double array_b[10];

 int *addr_a{array_a}; // 'addr_a' is a variable

 // that stores the address

 // of an 'int'

 double *addr_b{array_b}; // 'addr_b' is a variable

 // that stores the address

 // of a 'double'

8
Addresses and pointers

Address of variables

• Question: What about local variables or parameters?

– They, too, must have addresses…how can we find those addresses?

– The unary & operator returns the address of the operand
void f(int n);

void f(int n) {

 double a;

 long b[10];

 std::cout << "The address of the parameter 'n' is "

 << &n << std::endl;

 std::cout << "The address of the local variable 'a' is "

 << &a << std::endl;

 std::cout << "The address of the local array 'b' is "

 << b << std::endl;

}

 The address of the parameter 'n' is 0x7fff725f073c
The address of the local variable 'a' is 0x7fff725f0798
The address of the local array 'b' is 0x7fff725f0740

2020-09-30

3

9
Addresses and pointers

Address of variables

• Similarly, we can assign these addresses to variables
void f(int n);

void f(int n) {

 double a;

 long b[10];

 int *p_n{ &n };

 double *p_a{ &a };

 long *p_b{ b };

 std::cout << p_n << std::endl;

 std::cout << p_a << std::endl;

 std::cout << p_b << std::endl;

}

Output:
 0x7fff725f073c
 0x7fff725f0798
 0x7fff725f0740

10
Addresses and pointers

Pointers

• A variable that stores an address is referred to as a pointer

– Suppose you see:

 double *p_var{};

 you may describe the variable p_var as either

“a variable that stores the address of a double”

“a pointer to a double”

• To be absolutely clear to the reader,
 all pointer identifiers will be prefixed with 'p_'

– This is a naming convention widely used in industry

– We will use this naming convention in this course

11
Addresses and pointers

Size of a pointer

• Question: You are compiling code for a processor and you ask
yourself “How many bytes is an address on this processor?”

– Solution:

 std::cout << sizeof(int *) << " bytes" << std::endl;

• It doesn’t matter which type you pick: bool, int, double, short

• On the computer eceubuntu, we get the output of 8 bytes or 64 bits

– It is unlikely any of you will get anything else

 unless you have access to your parent’s laptop or desktop

12
Addresses and pointers

How do we access what is at that address?

• Suppose you have an address

 int *p_datum{ &n };

• Question: How do we access the integer stored at that address?

– Solution: Prefix the identifier with an asterisk

int main() {

 int n{ 42 };

 int *p_datum{ &n };

 std::cout << p_datum << std::endl;

 std::cout << *p_datum << std::endl;

 *p_datum = 100;

 std::cout << *p_datum << " == " << n << std::endl;

 n = 99;

 std::cout << *p_datum << " == " << n << std::endl;

 return 0;

}

Output:
 0x7fff725f073c
 42
 100 == 100

 99 == 99

2020-09-30

4

13
Addresses and pointers

Why pointers?

• Why do we need to store addresses?

– Arrays are fixed in their size:

• What if you have to change an array?

– Local variables and parameters are out of scope as soon as a
function returns

• What if we require memory that continues to exist outside the scope
of a given function?

14
Addresses and pointers

Making sense of C++ declarations

• Consider these declarations:

 int n;

 int array[10];

 int *p_datum;

 int gcd(int m, int n);

For n, to get an integer value, you must use n

For array, to get an integer value, you must use array[n]

For p_datum, to get an integer value, you must use *p_datum

For gcd, to get an integer value, you must call gcd(n1, n2)

This was the original C design
 Unfortunately, this doesn’t work for int &n;

15
Addresses and pointers

Capacity of an array?

• Up to now, we have indexed arrays with int:

 char array[100];

 for (unsigned int k{0}; k < 100; ++k) {

 array[k] = '\0';

 }

• With a 64-bit computer, we could declare a much larger array:

 char array[10000000000];

 for (unsigned int k{0}; k < 10000000000; ++k) {

 array[k] = '\0';

 }

– Problem: the maximum int is 232 – 1 or approximately 4 billion

16
Addresses and pointers

Capacity of an array?

• The type of an index into an array depends on the processor

– For 8-bit processors, we could use unsigned char

– For 32-bit processors, we could use unsigned int

– For 64-bit processors, we should use unsigned long

• Fortunately, there is a universal solution:

– The type std::size_t is always guaranteed to be an unsigned

integer that can store the maximum index for a particular processor

• From now on,

 if the purpose of a local variable is to index into an array,

 it will be declared to be of type std::size_t

2020-09-30

5

17
Addresses and pointers

Summary

• Following this lesson, you now

– Understand the concept of addresses and storing them

– Know how to access the address of data in memory

– Know how to access and manipulate data at a memory location

– Understand the size of addresses on different computer
architectures

– You know about std::size_t

18
Addresses and pointers

References

[1] https://en.wikipedia.org/wiki/Pointer_(computer_programming)

19
Addresses and pointers

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

20
Addresses and pointers

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

